The time-evolution of an Ising model with large driving fields over discrete time intervals is shown to be reproduced by an effective XXZ-Heisenberg model at leading order in the inverse field strength. For specific orientations of the drive field, the dynamics of the XXX-Heisenberg model is reproduced. These approximate equivalences, valid above a critical driving field strength set by dynamical phase transitions in the Ising model, are expected to enable quantum devices that natively evolve qubits according to the Ising model to simulate more complex systems.