A framework for quantum simulations of real-time weak decays of hadrons and nuclei in a 2-flavor lattice theory in one spatial dimension is presented. A single generation of the Standard Model is mapped to spin operators via the Jordan-Wigner transformation, and both quantum chromodynamics and flavor-changing weak interactions are included in the dynamics, the latter through four-Fermi effective operators. This mapping requires 16 qubits per spatial lattice site. Quantum circuits which implement time evolution in this lattice theory are developed and run on Quantinuum’s H1 1 20-qubit trapped ion system to simulate the beta-decay of a single baryon on one lattice site. Simulations of the real-time evolution of a single baryon, including initial state preparation, are performed for both one and two Trotter time steps. We comment on the potential intrinsic error-correction properties of this type of lattice theory.