Entanglement and Many-Body Effects in Collective Neutrino Oscillations

Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings, such as supernovae, where the neutrino density is large. In this regime, neutrino-neutrino interactions are important and simulations in mean-field approximations show evidence for collective oscillations occurring at time scales much larger than those associated with vacuum oscillations. In this work, we study the out-of-equilibrium dynamics of a corresponding spin model using Matrix Product States and show how collective bipolar oscillations can be triggered by quantum fluctuations if appropriate initial conditions are present. The origin of these flavor oscillations, absent in the mean-field, can be traced to the presence of a dynamical phase transition, which drastically modifies the real-time evolution of the entanglement entropy. We find entanglement entropies scaling at most logarithmically in the system size, suggesting that classical tensor network methods could be efficient in describing collective neutrino dynamics more generally.